GREEN HOPE HIGH SCHOOL - AP Biology Summer Assignments 2018

Ms. Thomasch: ithomasch@wcpss.net and Ms. Woodyard (Parkin)

Key Materials and Course Resources:

Textbook: Campbell Biology, 9e (ISBN-13: 978-0321558237)

(The textbook will be provided on the first day of classes, but feel free to purchase your own copy so you can write in it) **College Board Links:** <u>Course and Exam Description, Effective Fall 2012</u>

Lab Manual: <u>AP Biology Investigative Labs</u>

Required materials: binder with paper, quad-ruled lab notebook, calculator, and it's **STRONGLY SUGGESTED** that you purchase the **Barron's AP BIOLOGY EXAM prep- book** (6th edition ISBN-13: 978-1438008684)

Summer assignments:

- 1) Review and re-familiarize yourself with the Basic Biology and Science Concepts
- 2) Complete the Practice Review Math and Chemistry questions
- 3) Complete the Grid In Sample Math and Chemistry Problems (Note: watch out for sig figs)*
- 4) Purchase a quad-ruled notebook and calculator –**REQUIRED** the first day
- 5) Visit The College Board site and review over the overall course description and the Exam Format (P.124-169)
- 6) Read the Sections: About the Exam and Biochemistry from the Barron's AP BIOLOGY prep-book

*<u>Note:</u> Grid In Math and Chemistry sample problems at the end of this assignment are due Monday, 8/27, in class Late penalty = 50% and only will be accepted up till the end of the first Unit

Important Dates:

QUIZ (1/2 test grade) Chapters1-3 → Thurs. September 6th TEST Unit 1 Chapters 1-6 → Thurs. September 13th

Need Help or Have Questions?

Email Ms. Thomasch: <u>jthomasch@wcpss.net</u> or Ms. Woodyard (Parkin) <u>Note:</u> both teachers are traveling over the summer so help will be "sporadic" via email during that time

<u>Basic Biology and Science Concepts</u>: (It is expected that students be familiar with these concepts before the first day of classes – however; this part of the assignment is not collected)

- 1) The steps and overall process of the Scientific Method
- 2) The overall process of the Engineering Design Model
- 3) Inquiry Based Science
- 4) Inductive Reasoning vs Deductive Reasoning
- 5) Hypothesis (how to formulate and how to be written)
- 6) Independent vs Dependent Variables (as part of an experiment and how to be graphed)
- 7) Controlled vs Uncontrolled Experiment
- 8) Control group vs experimental group
- 9) Quantitative vs Qualitative data
- 10) Theories vs Laws
- 11) Negative vs Positive Feedback
- 12) The Characteristics of Life
- 13) Prokaryotic vs Eukaryotic Cells
- 14) DNA (overall structure and function) and Overall Gene expression
- 15) Evolution and Natural Selection
- 16) Levels of Classifications (Domains and the 6 kingdoms)
- 17) Genomics
- 18) Cell Reproductive Methods (Binary Fission, Mitosis, and Meiosis)
- 19) Basic Genetics (Solving monohybrid crosses using punnett squares)
- 20) Organic Molecules of Life Proteins, Lipids, Nucleic Acids, and Carbohydrates (monomers, polymers, and key functions)

<u>Practice Math and Chemistry Review questions:</u> (It is expected that students be familiar with these types of calculations/concepts before the first day of classes – however; this part of the assignment is not collected)

1) Grasshoppers in Madagascar show variation in their back-leg length. Given the following data, determine the <u>mean</u> and <u>standard deviation</u> for this data. (Round the answer to the nearest hundredth) <u>Length (cm)</u>: 2.0, 2.2, 2.2, 2.1, 2.0, 2.4 and 2.5

2) What is the **Surface Area to Volume ratio** for this cell? (Round to the nearest hundredth)

3) Calculate the probability of tossing three coins simultaneously and obtaining three heads. Express answer as both <u>fraction form</u> and <u>percentage</u>.

4) Determine the number of significant figures in each of the following:					
a) 804.5 g b) 0.0144030 km c) 1002 m d) 30 000 cm e) 400 mL f) 0.000625000 kg					
5) Perform the following operations and express each answer in scientific notation					
a) $(1.54 \times 10^{-2} \text{g}) + (2.86 \times 10^{-1} \text{g})$ b) $(7.023 \times 10^{9} \text{g}) - (6.62 \times 10^{7} \text{g})$ c) $(8.00 \times 10^{-4} \text{m}) \times (2.57 \times 10^{4} \text{m})$ d) $2.17 \times 10^{-3} \text{g}$					
c) $(8.99x10^{-4}m) \times (3.57x10^{4}m)$ 5.011x10 ⁴ mL					
6) Define each of the following:					
a) Atomic number b) mass number c) Atomic weight/mass d) mole e) isotope					
7) Determine the number of protons, <u>electrons</u> and <u>neutrons</u> are in an atom of bromine-80?					
8) Write the <u>Nuclear Symbol/Isotope Notation</u> for carbon-13.					
13) Distinguish between the different types of bonds/attraction :					
a) Covalent b) nonpolar vs polar covalent bonds c) ionic d)Hydrogen/imf					
14) Rewrite the following unbalanced equations as <u>balanced equations</u> : a) $H_2 + Cl_2 \rightarrow HCl$ b) NaOH + $H_2SO4 \rightarrow H_2O + Na_2SO_4$					
15) Find the <u>Molecular Weight (mass)</u> for the following: (Round to 2 sig figs) a) H ₂ O b) C ₁₃ H ₁₈ O ₂ (Ibuprofen) c) C ₉ H ₉ O ₄ (aspirin) d) H ₂ SO ₄					
16) What is the pH of each of the following?					
a) 1x10 ⁻³ M HCl b)1x10 ⁻⁵ M NHO ₃ c) 1x10 ⁻⁴ M NaOH d) 1x10 ⁻² M KOH					
17) Which is more <u>acidic</u> ? (H ⁺) of 1.0×10^{-3} or 1.0×10^{-12} Which is more <u>basic</u> ? (H ⁺) of 1.0×10^{-8} or 1.0×10^{-3}					
18) Stomach acid has a pH of about 1-2. What would the <u>H^+ concentration</u> be around?					
10) Complete the following Tables					

19) Complete the following Table:

[H ₃ O ⁺] or [H ⁺]	scientific notation	рН
0.1		
0.01		
0.001		

0.0001	
0.00001	
0.000001	
0.000001	
0.0000001	
0.000000001	
0.0000000001	

20) <u>As [H⁺] gets smaller</u>, scientific notation exponents get _____, and pH goes ______ <u>As [H⁺] gets larger</u>, scientific notation exponents get _____, and pH goes ______

<u>Grid in Math- Chemistry Problems. Show all work and use Significant Figures.</u> (Expect to see similar problems on the first quiz and test) <u>DUE IN CLASS 8/27</u>

1) Calculate the molecular mass (to 3 sig figs) of epinephrine, C₉H₁₃NO₃

2) Describe the steps/procedure you would follow to prepare the following from a solid: 150 mL of 0.20 <u>M</u> NaCl <u>Hint:</u> you need to first determine the number of grams of the NaCl needed

3) Describe the steps you would need to follow to prepare/dilute the following stock solution: 2000 mL of 0.05 <u>M</u> ammonia starting with an

8.0 M ammonia stock solution

4) Calculate the volume of the specified titrant required to neutralize 15 ml of 0.28 M NaOH.

Titrant: 0.60 <u>M</u> H_2SO_4 [2NaOH + $H_2SO_4 \rightarrow 2H_2O + Na_2SO_4$]

<u>**Hint:</u>** Formula = $n_aM_bV_b = n_bM_aV_a$ </u>

5) What molarity is 5.2% NaCl?

6) **Calculate** the <u>mean</u> for the following titrations of dissolved oxygen (ppm):

8.2, 8.3, 8.6, and 8.4

7) Calculate the <u>standard deviation</u> of the measurements in problem 6.