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Mathematics Review AP Chemistry 
 

 
Although the mathematics on the AP chemistry exam is not difficult, students find it to be challenging 

because most of it requires basic arithmetic skills that you have not used since middle school (or even 

elementary school).  Students generally have a good sense of how to use a calculator, but lack the skills 

of doing math without a calculator.  Most math classes stress the use of calculators to solve problems and 

on the AP chemistry exam at least fifty percent of it is to be done without calculators.  You will need to 

practice the basic math skills that you already know (just haven’t used much in the past) to develop your 

thinking to solve the problems that you will encounter.    

 

 

Format of Multiple Choice AP test: 

 60 multiple choice questions 

 90 minutes on the section 

 Average time is 90 seconds per question 

 NO CALCULATORS ARE TO BE USED 

 NO GUESSING PENALTY 

 Choices go from the  

o lowest number to the highest number 

o they are generally lined up by decimal points, even though this does not make the number 

list “straight” 

 Allows you to see decimal points and significant figures easier. 

 Periodic table and formula charts are provided at the beginning of the exam 

 Questions will often be grouped by common given information, but every question will have it’s 

own four answer choices 

 

 

Source of these problems 
 

Each problem of the following practice problems are directly related to released AP chemistry exam 

questions.  There will be nothing in this packet that does not directly relate to developing the skills and 

abilities that students need to be successful on the AP chemistry exam. 

 

 
How to do the math 

 

What follows are the notes and the “meat” of this packet.  The intent of this packet is to cover the math 

necessary to be successful on the AP Chemistry exam.  If it seems to be overly basic in its approach, the 

underlining principle in writing this packet is to assume that you (the students) do not remember anything, 

so we will start at beginning. 
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Conversion Factors and Dimensional Analysis 

 

There are two guiding mathematical principles when working with conversion factors. 

 

1. When the numerator (the top of a fraction) and the denominator (bottom of the fraction) are the 

same, then the fraction equals one. 

2. When any number is multiplied by one, you do not change the number at all.   

 

A conversion factor is a fraction that equals one, since the top and the bottom are the same thing, just 

expressed in different units.  Examples of conversion factors are: 

 

dimes 10

dollar 1
, 

1foot

inches 12
, 

year 1

days 365
, 

mile 1

feet 5280
, 

dozen 1

eggs 12
,

feet 5280

yards 1760
, 

yards 1760

feet 5280
. 

 

For the last two, how do you know which one to use?  You let the units guide you.  You ask yourself a 

series of questions as you do the problem.  

 

1. What unit has to go on the bottom to cancel? 

2. What can I change that unit into? 

3. What numbers will make them equal? 

 

Using the units to guide you in the problem is called “dimensional analysis”.  This method only works if 

you put your units in the problem and cancel them.   Here is the trick…you have to think about them 

canceling.  Don’t just make your teacher happy by canceling units.  If you do not get the units to work out 

and give you what you are asked to find, then you have 100% of getting the problem wrong.  If the units 

do work out, your final unit is what you are asked to find, then you have a 90% chance of getting the 

problem right (the other 10% is making dumb mistakes or math errors in your calculations).  

 

Say you are 16 years old and you want to know how old you are in minutes.  So you start out with 16 

years. 

 

minutes 600 409 8
hour 1

minutes 60

day 1

hours 24

year 1

days 365years  16
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. What unit has to go on the 
bottom to cancel?  Answer: years 

 

2. What can I change that unit into? 
Answer: days (you could have 

picked months or weeks) 

 
3. What numbers will make them 

equal?  Answer: 1 year is 365 

days, so 1 is on the bottom and 
365 is on the top. 

 

Notice that the top and the bottom 
of the fraction measure the same 

thing, so this conversion factor 

equals one. 

 

 

1. What unit has to go on the bottom 

to cancel?  Answer: days 
 

2. What can I change that unit into? 

Answer: hours 

 

3. What numbers will make them 

equal?  Answer: 1 day is 24 
hours, so 1 is on the bottom and 

24 is on the top. 

 
Notice that the top and the bottom 

of the fraction measure the same 

thing, so this conversion factor 
equals one. 

1. What unit has to go on the bottom 

to cancel?  Answer: hours 
 

2. What can I change that unit into? 

Answer: minutes 

 

3. What numbers will make them 

equal?  Answer: 1 day is 60 
minutes, so 1 is on the bottom 

and 60 is on the top. 

 
Notice that the top and the bottom 

of the fraction measure the same 
thing, so this conversion factor 

equals one. 
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You want to make sure that you cancel as you go.  If the units don’t cancel, you made a mistake.  Notice 

also that all that this problem did was to multiple 16 years by 1, 1 and 1.  Anytime that you multiple by 

one, you do not change the number. 

 

A common mistake is that students put the number from the start at the bottom of the first conversion 

factor, making the problem look like this
year 16

days 5840years  16
 .  You should never have to reach for a 

calculator to put the numbers in a conversion factor – you should know what the numbers are and where 

the numbers come from!   

 

You were asked for your age in minutes but were given years, so you have to convert the units.  If the 

final unit is minutes then you have a 90% chance that you got the problem correct.   

 

Another method to set up the problem involves “railroad tracks” which is shown below.  This method is 

the same thing; it is just set up differently.  Either setup will get you credit on the AP exam and earn you 

the point for showing your work. 

 

16 years       365 days         24 hours       60 minutes        = 8 409 600 minutes 

                     1 year             1 day              1 hour 

 

 

Note on using calculators 
 

Solve this problem:     _______________
96500

 55.85
    

35.4527

10 x 6.022
    

25

3
    

10 x 1.60

10 x 9.11
    3.85

23

19

31






 

 

 

Students commit two common errors when they reach for their calculator to solve problems like the ones 

above.  First, the calculator cannot read your mind and will do exactly what you tell it to.  If students are 

not careful, order of operations will cause you grief.  Many students set up these problems correctly on 

the free response and then do not earn points because they cannot use their calculator correctly.   

 

The second problem is entering scientific notation into your calculators.  Take the most common number 

in scientific notation used in chemistry, 6.022 x 1023.  The “6.022” can be called the coefficient, digit term 

or the significand while the “x 1023” is called the base or the exponential term.  If you use the buttons 

“10^” or “^” to enter scientific notation, you SHOULD (and in some problems MUST) use parenthesis 

around the numbers to “glue” the coefficient to the base, if you do not, you may get the wrong answer 

(depends on the type of problem you are solving).  A much better method to enter this information into 

your calculator is to use the “EE” key (graphing calculators), “EXP” key (generally on non-graphing 

calculators, but some may have the “EE” key), “E” key (not generally seen) and the “x10” (not generally 

seen).  By using this key, the calculator automatically “glues” the coefficient with the base.  

 

When doing this type of problem, there are two things you want to do…use the EE key and use parenthesis 

around the top numbers (3.85, 9.11x10-31, 3, 6.022x1023 and 55.85), hit the divide key, and then use 

parenthesis around the bottom numbers (1.60x10-19, 25, 35.4527 and 96500).  This will save you many 

keystrokes on the calculator.  Reducing the number of keystrokes reduces the number of chances that you 

have to make a mistake. 

 

http://en.wikipedia.org/wiki/Significand
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Version One    Version Two 

 

  

  

 

 

Version Three    Version Four 

 

Version one is wrong.  The student did not use the parenthesis to “glue” the coefficient to the base.   

 

Version two is correct.  Version three and four are also correct, however, version two only required 60 

keystrokes, while version three required 70 and version four 91.  The fewer keystrokes, the less likely it 

is that you will make a mistake.  The slight difference in the answers for version two/three and version 

four is due to the fact that the numbers in two and three were carried in the memory of the calculator and 

not entered by the student. 

 

Note on Canceling 
 

As problems are done in this packet, when numbers or units are canceled, not only will the units cancel, 

but how the units are canceled, will cancel.  The ways to show units canceling are “/”, “\”, “—” and “|”.  

The “/” was done with the years above, “\” canceled the days and the “—” canceled the hours.  This is 

done so that it is easier for students to follow what was canceled in the example problems. 

 

 

Cross Canceling of Numbers 
 

Cross canceling refers to canceling a numerator with a denominator, or a factor that is in each of them.  It 

is one of the most important skills you need to remember for dealing with the multiple choice problems 

on the AP chemistry exam.  In the first example, the numbers that cancel are side by side, however, on the 

exam, the numbers may not be side by side.  Just remember to cancel numerator with denominator. 

 

 

 

 

 

 

DID YOU KNOW 
 
That a horizontal line in 

mathematics is called a 

vinculum? Its name comes from 

the Latin and it means “bond” or 

“tied”.  It is used in a 

mathematical expression to 

indicate that the group is to be 

considered “tied” together.  The 

vinculum can be used to express 

division. The numerator appears 

above the vinculum and the 

denominator beneath it. 

 

Because the vinculum means to 

group together, we have to use 

the parenthesis and the “EE” key 

to glue the correct parts together 

so the calculator can do the 

problem correctly. 

http://en.wikipedia.org/wiki/Mathematical_expression
http://en.wikipedia.org/wiki/Division_(mathematics)#Notation
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Example:  
3

5
  x  

5

12


3

5
  x  

5

12
  4

3

5
  x  

5

12
   

 

 

 

 

 
 

Example:  
3

1
  x  

14

4
  x  

9

3
  x  

8

4
  x  

2

3
  x  7   

6

1

23

1
  

3

1
  x  

14

4
  x  

9

3
  x  

8

4
  x  

2

3
  x  7 


  

 

 

 

 

Memorization 

 

Although this is AP chemistry, you must remember some basic math and arithmetic information.  What 

you have to memorize (and apply) is kept to a minimum; but you MUST know it to be successful on the 

AP chemistry exam.   

 

The first thing to remember is: 

 

 Divided by ten, decimal point moves to the left one place. 

 Multiple by ten, decimal point moves to the right one place. 

 Divide by powers of ten (100 = 102, 1000 = 103, etc) move the decimal point to the left the same 

number of spaces as the power of ten. 

 Multiple by powers of ten (100 = 102, 1000 = 103, etc) move the decimal point to the right the 

same number of spaces as the power of ten. 

 

Another common mathematic problem is division by a fraction.  Remember, find the main division bar 

and rewrite as a multiplication problem by multiplying by the reciprocal of the fraction on the 

denominator: 

a c ac
a

b b b

c

  

 
 

To make problems easier, it is generally better to write a mixed fraction as an improper fraction.  

Remember 
8

29

8

58) x (3

8

5
3  is example  

c

b(ac)

c

b
a 





  

A common approach for a problem might be to have you solve the following problem, 
3.00

1.20
which can be 

done “long hand” or you can use the fraction information and division by a fraction to make the problem 

a little easier. 

 

1 

1 

1 

1 1 

4 

the fives cancel 

3 goes into 3, 

once and the 

3 goes into 12 

four times. 

1 

2 

1 2 

2 

1 1 

3 1 

1 

1 

1 
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3.00 3.00 3.00 5 3.00 1
3.00 5 5 2.50

1 61.20 6 6 2
1

5 5

        

 
 

The following fractions, their decimal equivalence and their percentages must be memorized. 

 

  0.0%80.80
5

4
              0.0%60.60

5

3
             0.0%40.40

5

2
             20.0%0.20

5

1
  

1 3 5 7
0.125 12.5% 0.375 37.5% 0.625 62.5% 0.875 87.5%

8 8 8 8

1 2 1 3
0.33 33% 0.67 67% 0.25 25% 0.75 75%

3 3 4 4

1
0.50 50%

2

       

       

 

  

 

Once you know these fractions, you can use them to determine other fractions.  

 

Example:  What is 6
1 as a decimal?   

 

Think of 6
1 as 3

1
2
1 of → ½ of 0.333 = 0.1667 

 

Likewise, you can think of 8
1 as ½ of ¼, which gives you ½ x ¼ or ½ x 0.25 = 0.125.  You can think of 

8
1

2
1

8
1

8
4

8

5  as  = 0.5 + 0.125 = 0.625, so as long as you have the basic list memorized, you should be 

able to do problems that appear on the test. 

 

Example:  What is 0.025 as a fraction? 

   

First thing is to recognize that the fraction is really based on 0.25, or ¼.  But you want 0.025, so that is 

done like this:  
40

1

10

1
 x 

4

1

1
10

4
1

10

4
1

10

0.25
  0.025   

This type of problem often appears when the question is dealing with stoichiometry or titration problems 

where you are given molarities like 0.025 M, 0.0125 M and 0.020 M. 

 

If you are given a decimal number like 0.150 M or 0.120 M and it does not fit any of the fractions above, 

you can also write it as a fraction by moving the decimal to the right until it is behind the last non-zero 

number, and then put it over the appropriate power of 10, which would be 10(number of decimal places moved).  So 

if you move a decimal 3 places to the right, then it the denominator will become 103, or 1000. 

 

So, 0.150 M would become 
100

15
 and 0.120 M becomes

100

12
.  If you have a problem that involves molarities 

like these, work the problem with the fractions; the problem is designed for you to do that. 
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Example is from the 1994 AP test question #55. 

What volume of 0.150-molar HCl is required to neutralize 25.0 millilters of 0.120-molar Ba(OH)2? 

(A) 20.0 mL 

(B) 30 0 mL 

(C) 40.0 mL 

(D) 60.0 mL 

(E) 80.0 mL  

 First step is to write out the balance equation. 

Ba(OH)2 + 2 HCl  2 HOH + BaCl2 

 The second step is to place your information so you can do the problem. 

 

Ba(OH)2 + 2 HCl  2 HOH + BaCl2 

          25.0 mL    ? mL 

          0.120 M      0.150 M 

 

Since the problem said “neutralize” we know that the moles of acid and the moles of base are 

stoichiometrically equal. 

So, the first thing to do is to rewrite the molarities as fractions, 
100

15
 and

100

12
. 

Next, find the moles of Ba(OH)2, moles = molarity x volume. 

 

millimoles 3
4

12

1

25

100

12
smilliliter 25.0

liter

moles

100

12
volumemolaritymoles 

























  

 

Next find the number of moles HCl. 

 

HCl millimoles 6

2
Ba(OH) mole 1

HCl moles 22
Ba(OH) millimoles 3.0

  

Last step is to find the volume of HCl used.  Volume equals
molarity

moles
. 

 

 

 

smilliliter 40.0
moles

liters

15

100HCl millimoles 6

liters

moles

100

15

HCl millimoles 6

molarity

moles
volume 


































  

 

 

 

 

 

 

Molarity = 
solution

solute

liters

moles
 

1 

4 

2 

5 
1 

20 

Notice that I only cancelled 

the “liters” part of the 

milliliters.  This would 

leave a “milli” and that will 

be multiplied by the moles 

to get millimoles.  You can 

“track” the “milli” through 

the problem.  
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A common type of problem will require you to use scientific notation and to use the following exponent 

laws (which need to be memorized): 

 

   

 0 1
1 0

n mm n m n m n m n m m n m m

n

n

a a a a a a a a ab a b

a a a
a

  



     

  
 

 

Example:  A problem gives you the Keq value of 2.0 x 107 and would like the Keq value for the reverse 

reaction, which is the reciprocal of the given Keq value. 

 

Answer: 
0

0 7 7 8

7 7

1 1 10 1
10 0.5 10 5 10

2.0 10 2.0 10 2

  
      

 
 

 

Another way to do this problem is to rewrite 1 as 10 x 10-1.  Doing this, you will have: 
1

1 7 8

7 7

1 10 10 10
10 5 10

2.0 10 2.0 10 2.0


  

    
 

 

 

This trick is very helpful when you have to do division.  It allows you to get a whole number directly from 

the problem and not have to try to move the decimal point in scientific notation (like the first method 

does). 

 

The last exponent rule is commonly used on the AP exam with units (both on the formula charts and in 

problems).  The exponent law that says 
n

n

a
a

1
 will often show up on the test with units like sec-1 (which 

means
sec

1

sec

1
sec

1

1  ) or mol-1 (
mol

1
) or K-1 (

K

1
). When you are doing kinetic problems, you will see 

units like, M-2 (
2

2

2

2

2

22

2

mol

liters

mol

liters
 x 1

liter

mol

11


M
M ). 

 

You will also need to remember your “perfect squares” from 1 to 12. 

 

12 = 1  22  = 4  32  = 9  42 = 16  52 = 25  62 = 36  

 

72 = 49  82 = 64  92 = 81  102 = 100 112 = 121 122 = 144 

 

 

Scientific Notation 
 

In science, the numbers are characteristically very large (a mole is 602 214 179 000 000 000 000 000) or 

very small (the charge carried by an electron is 0.000 000 000 000 000 000 160 217 653 coulombs).  

Scientific notation is used to conveniently write the numbers using powers of ten.  So 1,650,000 can be 

written (with four significant figures) as 1.650 x 106 (which generally will be written as 1.650 x 106 ~ it 

makes it easier for people to see the exponent).  This can be thought of as 1.650 x 10 x 10 x 10 x 10 x 10 

x 10 (six sets of 10, since the exponent was 6). 
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Notice that  

1.650 x 10 x 10 x 10 x 10 x 10 x 10 

= 16.50 x 10 x 10 x 10 x 10 x 10  

=165.0 x 10 x 10 x 10 x 10 

=1650. x 10 x 10 x 10 

=16500. x 10 x 10  

=165000. x 10  

=1,650,000 

 

So by multiplying by 10, we are moving the decimal place over to the right that many times and get a 

number bigger than one. 

 
 

Likewise, if we have a number that is smaller than one, we should divide by powers of 10 and move the 

decimal point to the left.  So 0.000321 can be thought of as: 

440

4

0

4
10 x 3.2110 x 3.21

10

10 x 3.21

10

3.21

10 x 10 x 10 x 10

3.21    

 

Remember that 100 is 1 and anything multiplied by one is still itself. 

 

Students have a problem sometimes in remembering if the exponent is positive or negative.  The easiest 

way to remember this is to ask yourself “is the original number less than one?”  The answer to this question 

will determine if your exponent is positive or negative. 

 

Is the original number less than one? Exponent will be Examples 

Yes Negative 0.0025 = 2.5 x 10-3 

No Positive (or zero) 320500 = 3.205 x 105 

 

Powers and Roots 
 

Just as operations of addition and subtraction and the operations of multiplication and division are related 

to each other (in math terms they are inverse operations of each other), so are exponents and roots.  When 
2 9 is written, the 2 is called the “index”, the 9 is called the “base” or “radicand” and the is called the 

“radical” or “root”.  When the index is “2”, we often call it “square root”. 

 

Fractional exponents can be used to represent taking the “root” of a number, thus 2 9 can also be written 

as 9½, likewise 3
1

8 is another way to write the third root of eight, 3 8 , which equals 2.  We will use this 

idea to solve problems like x2 = 2.5 x 10-9.  The idea here is to write the scientific notation in a non-

traditional form so that it will be easier to take the square root.   

 

 

 

 

 

 

A note about commas and numbers:  

Most textbooks will not use commas to 

separate numbers into groups of three.  

They will add a space instead, so 

1,650,000 will be written as 1 650 000 

– this is because in other countries, a 

comma in a number is read as a 

decimal point and you can’t have two 

decimal points in a number! 
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x2 = 2.5 x 10-9 x2 = 25 x 10-10 
101025x     2

1
101025x       2

1
102

1
1025x    

 

 

 

 

25½ is the square root of 25, which is 5 and the   52
1

10 1010   since a power to a power is multiplied and 

-10 x ½ = -5.  So the final answer is x = 5 x 10-5. 

 

Logarithms 
 

Another type of math problem that you will be expected to be able to do is simple logarithms.  Remember 

a logarithm is just another way to write an exponent problem.  Remember that logarithms are just a 

“circular” way of writing exponents.  Take for example 2x = 8 can be written as log28. 

 

 

 

2x = 8 → 2log 8 3  

 

 

 

 

Remember that
B

10log 1.0 10 B   , so when given a question that says “determine the approximate 

range that an indictor would be appropriate for?” – you are looking for the pKa value; you will need to 

know how to find the approximate answer.   The exponent will always give you the characteristic of the 

number…unless the number in front of the “x” sign is 1, then your answer (when you take the log) will 

be (exponent – 1) – in this case B - 1. 

 

Look at the following chart and look at the pattern of the numbers: 

 

Number 

  

log10 of number 

1.00 x 10-5 5.00 

1.78 x 10-5 4.75 

3.16 x 10-5 4.50 

5.62 x 10-5 4.25 

10.0 x 10-5 4.00 

 

The logarithmic scale is not linear.  The half-way point for the log (a mantissa of “.5”) will be determined 

by 3.16 x 10-?? ; an easy way to remember this is x 10-?? will give you the mantissa of “.5” and the 

exponent determines the characteristic of the your answer.   

 

When you see things like pH, pOH, pKa, pKb or pKw, what does the little “p” represent?  The little “p” in 

front of a term means “-log10”, so pH = - log10[H
+], likewise pKa = log10Ka and so on. 

 

Manipulation of Equations 

For the pH = 3.45, the “3” is called the characteristic and the “.45” is the 

mantissa.  The characteristic is ALWAYS determined by the exponent in the 

number.  The mantissa is always determined by the number in front of “x” in 

scientific notation (hence the special rule for significant figures).  

Say you have log10 5.16 x 10-9; the -9 will determine the characteristic and 

the 5.16 will provide you the mantissa. 

Since we went from 2.5 to 25 (we want a whole number that is a perfect square), we moved the decimal point to 

the right; we will need to move it back one extra space to the left, so the exponent will have to become -10. 
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In chemistry, just as in other science classes, students will have to manipulate equations.  The equations 

are not hard and there are not too many that appear on the test.  The most common equations and where 

they are used are given below. 

 

  

Equation Where is it used 

V

m
D   Density problems – usually multiple choice 

PV=nRT 
Ideal Gas Law – gas law problems, usually on the 

free response 

solution

solute

liters

moles
M   Molarity – determine the concentrations of 

solutions, usually multiple choice 

q = mcT 
Thermochemistry/specific heat problem – both 

multiple choice and free response problems 

G=H-TS 
Thermodynamics problems – both multiple choice 

and free response problems 

2

22

1

11

T

VP

T

VP
  Combined Gas Law – gas law problems, multiple 

choice usually 

 

When solving an equation…use the algebra that you already know.  You want to solve for a term, 

(meaning you want that term by itself) your equation should look like “term = variables”. 

 

Remember to solve for a variable, look at the other variables and you want to use the operation that 

“undoes” whatever you have in the problem. 

 

 division undoes multiplication  

 multiplication undoes division 

 addition undoes subtraction 

 subtraction undoes addition 

 power undoes a logarithm 

 logarithm undoes a power  

 

Examples: 

  

Solve for “m”   Solve for “m”  Solve for “volume”           Solve for "T" 2  

      

 

 

 

 

 

 

 

 

 

 

 

 
M

mol
vol

M

mol

M

volM

molvolM

vol
vol

mol
volM

vol

mol
M

liters

moles
M

solution

solute














11

122
2

11

122

1

112

11

1

22

1

112

2

222

1

112

2

22

1

11

VP

TVP
T

VP

TVP

T

VPT

VP

T

VP

T

VPT

T

VPT

T

VPT

T

VP

T

VP

















































mVD

V
V

m
VD

V

m
D







m











T c

q

T c

T mc

T c

q

T mc = q
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The last two are the hardest for students to do, since the problem asked for you to solve for a variable in 

the denominator. Your first task is to get the term out of the denominator, i.e. multiple both sides by that 

term and have them cancel.  Then use algebra to solve for that term.     

 

When you have the equation solved and are substituting (plugging in) your values, please don’t forget the 

units.  The units will tell you if you have the equation correct.  If the units don’t work out, you know that 

you made a mistake in solving the equation.  Say that you are using the density equation to solve for 

volume and did the following work: 

 

V
m

D

m

1

V

m
D

m

1

V

m
D































 

 

and then substituted the numbers with units and got this: 

 

smilliliter

1

grams

1

smilliliter

grams

1

grams
smilliliter

grams

grams

smilliliter

grams

 V
m

D

















  

 

You are looking for volume and should get the units of “milliliters” and when you solved the problem, 

you got the units “
smilliliter

1 ” which should tell you that your equation is wrong!  Not only that, but getting 

the units “
smilliliter

1 ” tells you how to fix your equation.  You want “milliliters” and you got the reciprocal 

of that unit, so all you need to do is to take the reciprocal of your equation (flip the equation) and you will 

have
D

m
V  . 

 

Some math tricks 

 
 If you don’t like to work with numbers like 0.025, move the decimal point three places to the right 

and think of the number as 25 – just remember to move the decimal point three places back to the 

left when done with the problem. 

 Anytime that you have a number that has 25 in it…think of it as money.  You are dealing with a 

quarter.  If the problem is 0.25x = 1.25 → that is the same as asking how many quarters does it 

take to make $1.25? 

 If you are a “music person” – then think of “25” as a quarter note, so 0.25x = 1.25 is the same as 

asking, “How many quarter notes does it take to make a whole and quarter note?” – make it relevant 

to your interests. 

 If you are squaring a number that ends in 5, like 35.  This is what you can do. 

o Take the number in front of the 5 – in this case it is 3.   

o Add one to the number – in this example that would be 1 + 3 = 4 

o Take this number and multiple by the original number; here we get 4 x 3 = 12. 

o Take this number and put 25 at the end.  Here we would get 1225. 
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 Use the skills that you learned in algebra for factoring. 

o (a + b)(a - b) = a2 – b2 is one of the most common factoring methods used in algebra.  How 

does it relate to doing problems?  Let’s say that you have the following problem:  47 x 43 

= ?  You can think of that as: 

(45 + 2)(45 – 2) 

       = 452 – 22  

= 2025 – 4  

= 2021 

 

o Another method is to use the distributive property “backwards”.  Let’s say that you have 

to solve the problem 12 x 14.  To make this problem simpler to solve, think of 14 as 12 + 

2, so: 

12 x 14 = ? 

12(12 + 2) = ? 

(12 x 12) + (12 x 2) = ? 

122 + (12 x 2) = ? 

144 + 24 = 168 
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Problems 
 

DO NOT use a calculator on these problems.  This should all be able to be done without them. 

 

 

1) Complete the following chart – have the fractions in lowest terms.   

 

 Decimal Fraction Decimal Fraction 

a) 0.375  j) 0.67  

b) 0.75  k) 0.125  

c) 0.875  l) 0.33  

d) 0.60  m) 0.5  

e) 0.25  n) 0.20  

f) 0.020  o)  4

3  

g) 0.075  p)  4
1  

h) 0.005  q)  5
1  

i) 0.625  r)  16
1  

 

2) Solve the following by rewriting them as fractions (if needed) and show your work. 

 

Express answers in this 

column as a fraction or 

whole number 

 Express answers in this 

column as a decimal (may 

approximate if needed) 

a) 
125.0

5.0
  

g) 
25.1

1
 

b) 
50.0

25.0
  

h) 
2.0

5.0
 

c) 
075.0

025.0
  

i) 
5

1

8
1

 

d) 
075.0

125.0
  

j) 
5

12

1
 

e) 
02.0

6.0
  

k) 
5.2

8
3

 

f) 
2.0

6.0
  

l) 
75.1

625.2
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3) Solve the following, showing all of your work. 

 

a) 
5

18

10 x 4

10 x 6


= 

b) 510 x 4

1


= 

c) 
  

4

315

10 x 1.5

10 x 1.510 x 4 

= 

d)   315 10 x 1.510 x 4  = 

e) 
  

8

47

10 x 4.5

10 x 1.510 x 2
= 

f)  3510 x 4  = 

 

4) Solve the following problems, using cross canceling of numbers.  Show your work. 

 

a) ______
1

44

4

2

18

19    e) ______
1

28

2

3

174

187   

 

 

b) ______
1

6

1

3

28

1280    f) ______
1

42

2

1

2

112   

 

 

c) ______
1

42

1

1

28

170    g) ______
1

158

4

2

55

1165   

 

 

d) ______
1

158

3

2

32

148    h) ______
1

100

1

1

44

133.0   

 

 

5) Solve for “x”.  
 

a)  

 

 

b)  

 

 

c)  

 

d)  

 

 

e)  

 

 

f) 323 1008.1)2()3( xx

82 102.3)2)(( xx

16100.8
5.0

))(( 
xx

9102.3
125.0

))(( 
xx

7104.6
25.0

))(( 
xx

5100.5
5.0

))(( 
xx
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Examples of AP Multiple Choice Questions 
 

Do the problems and answer the questions.  You may NOT use a calculator! 

 

1. What is the mole fraction of ethene, C2H4, in an aqueous solution that is 28 percent ethene by mass?  The molar 

mass of ethene is 28 g, the molar mass of H2O is 18 g. 

 

(a) 0.20 

(b) 0.25 

(c) 0.50 

(d) 0.67 

(e) 0.75 

 

 

 

 

 

 

 

 

 

2. If 200. mL of 0.80 M MgCl2(aq) is added to 600. mL of distilled water, what is the concentration of Cl-(aq) in the 

resulting solution?   

 

(a) 0.20 M 

(b) 0.30 M 

(c) 0.40 M 

(d) 0.60 M 

(e) 1.2 M 

3. How many grams of calcium carbonate, CaCO3, contain 48 grams of oxygen atoms? 

(a)   41 grams 

(b)   50. grams 

(c)   62 grams 

(d)   88 grams 

(e) 100 grams  

4. When a 1.25-gram sample of limestone, that cotains CaCO3 and inert impurities was dissolved in acid, 0.22 grams of 

CO2 was generated.   What was the percent of CaCO3 by mass in the limestone?  

(a) 20% 

(b) 40% 

(c) 67% 

(d) 80% 

(e) 100%  

5. A gaseous mixture containing 7.0 moles of hydrogen, 2.5 moles of oxygen, and 0.50 mole of helium at a total 

pressure of 0.60 atmospheres. What is the partial pressure of the hydrogen? 

(a) 0.13 atm 

(b) 0.42 atm 

(c) 0.63 atm 

(d) 0.90 atm 

(e) 6.3 atm  

To solve this problem you will need to solve this: 

y

x





18

1
72

28

1
28

  Then your final answer is found by 
yx

x


 

 

 

 

 

 

 

To solve this problem you 

will need to solve this: 

 

  
800

80.0200
  

 

 

 

 

 

 

To solve this problem you will need to solve this: 

 

1

100

3

1

16

1
48   

 

 

 

 

 To solve this problem you will need to solve this: 

 

25.11

100

1

1

44

1
22.0

x
isanswerfinalthenx   

 

 

 

 

 
To solve this problem you will need to solve this: 

 

 60.0
10

7








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6. The density of an unknown gas is 2.00 grams per liter at 3.00 atmospheres pressure and 127 °C. What is the 

molecular weight of this gas? (R = 0.0821 liter-atm / mole-K) 

(a) 254/3 R 

(b) 188 R 

(c) 800/3  R 

(d) 600 R 

(e) 800 R 

 

 

 

 

 

7.     CH4(g) + 2 O2(g)  CO2(g) + 2 H2O(l);  = -890 kJ 

Hf° H2O(l) = - 290 kJ / mole 

Hf° CO2(g) = - 390 kJ / mole 

What is the standard heat of formation of methane, Hf° CH4(g), as calculated from the data above? 

 (a) -210. kJ/mole 

 (b) -110. kJ/mole 

(c)   -80. kJ/mole 

(d)    80. kJ/mole 

(e)  210. kJ/mole 

 

8. If 70. grams of K3PO4 (molar mass 210 grams) is dissolved in enough water to make 250 milliliters of solution, what 

are the concentrations of the potassium and the sulfate ions? 

 [K+]  [PO4
3¯]  

(A)  0.75 M  0.75 M  

(B)  1.0 M  2.0 M  

(C)  1.3 M  1.3 M  

(D)  2.0 M  2.0 M  

(E)  4.0 M  1.3 M  

 

 

 

 

 

 

 

 

To solve this problem you will need to solve 

this: 

 

  
  273127

13

2

R

 

 

 

 

 

 

To solve this problem you will need 

to solve this: 

 

      x 39012902890  

 

 

 

 

 

To solve this problem you will need to solve this: 

 

0.25

3
][K               

0.25
 ][PO            

210

1
70 -3

4

xx
x    
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9. What mass of Cu is produced when 0.0500 mol of Cu2S is reduced completely with excess H2?  

(a) 6.35 g 

(b) 15.9 g 

(c) 24.5 g 

(d) 39.4 g 

(e) 48.9 g  

 

 

 

 

 

10. CS2(l) + 3 O2(g)  CO2(g) + 2 SO2(g) 

 

What volume of O2(g) is required to react with excess CS2 (l) to produce 2.0 liters of CO2(g)?  (Assume all gases 

are measured at 0oC and 1 atm.) 

 

(a) 6 L 

(b) 22.4 L 

(c) 1/3 x 22.4 L 

(d) 2 x 22.4 L 

(e) 3 x 22.4 L 

 

 

 

11. A 2 L container will hold about 6 g of which of the following gases at 0oC and 1 atm? 

 

(a) SO2 

(b) N2 

(c) CO2 

(d) C4H8 

(e) NH3 

 

 

12. 

2 N2H4(g) + N2O4(g)  3 N2(g) + 4 H2O(g) 

 

 When 8 g of N2H4 (32 g mol-1) and 46 g of N2O4 (92 g mol-1) are mixed together and react according to the 

equation above, what is the maximum mass of H2O that can be produced? 

 

(a)     9.0 g 

(b)   18 g 

(c)   36 g 

(d)   72 g 

(e) 144 g  

To solve this problem you will need to solve these two problems: 

 

______
1

18

1

4

92

1
46       and                                  ______ 

1

18
  

2

4
  

32

1
 8   

 

 

 

 

 

To solve this problem you will need to solve this: 

 

1

55.63

1

2
0500.0   

 

 

 

 

 

To solve this problem you will need to solve this: 

 

1

4.22

1

3

4.22

1
2   

 

 

 

 

 To solve this problem you will need to solve this: 

 

x
x

6
 solve    then                     

22.4

1
2   
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13. What number of moles of O2 is needed to produce 71 grams of P4O10 from P? (Molecular weight P4O10 = 284) 

 (a) 0.500 mole 

(b) 0.625 mole 

(c) 1.25 mole 

(d) 2.50 mole 

(e) 5.00 mole  

 

 

 

 

 

Rate = k[A]2 [B] 

 

14. The rate of a certain chemical reaction between substances A and B obeys the rate law above.  The reaction is first 

studied with [A] and [B] each 1 x 10-3 molar.  If a new experiment is conducted with [A] and [B] each 2 x 10-3 

molar, the reaction rate will increase by a factor of  

 

(a)   2 

(b)   4 

(c)   6 

(d)   8 

(e) 16 

 

 

 

15. A 0.5-molar solution of a weak monoprotic acid, HA, has a Ka of 3.2 x 10-5. The [H3O+] is? 

 

 (a) 5.0 x 10-7 

 (b) 2.0 x 10-7 

 (c) 1.6 x 10-5 

 (d) 1.6 x 10-4 

 (e) 4.0 x 10-3  

 

To solve this problem you will need 

to solve this: 

 

[2] 2[2] =  

 

 

 

 

 

 
To solve this problem you will need 

to solve for x. 

 

5102.3
5.0

))(( 
xx

 

 

 

 

 

 

To solve this problem you will need 

to solve this: 

 


1

10

284

1
71  
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16. Uranium-235 undergoes neutron capture as shown in the equation below.  Identify nuclide X. 
235 1 0 145 1 0

92 0 56 0U + n Ba + 3 n + X  

 

 

93

34

90

34

88

36

90

36

93

36

(a) Se

(b) Se

(c) Kr

(d) Kr

(e) Kr

 

 

 

17.      H2(g) + Br2(g) 2 HBr(g) 

 

 At a certain temperature, the value of the equilibrium constant, K, for the reaction represented above is 4.0 x 105.  

What is the value of K for the reverse reaction at the same temperature? 

 

(a) 4.0 x 10-5 

(b) 2.5 x 10-6 

(c) 2.5 x 10-5 

(d) 5.0 x 10-5 

(e) -4.0 x 105 

 

18. If the acid dissociation constant, Ka, for an acid HA is 8 x 10-4 at 25 °C, what percent of the acid is dissociated in a 

0.50-molar solution of HA at 25 °C? 

 (a) 0.08% 

 (b) 0.2%   

 (c) 1% 

(d) 2%    

 (e) 4%  

 

 

 

To solve this problem: the numbers 

on the top for the reactants must equal 

the numbers on the top for the 

products.  Same is true for the bottom 

numbers. 

 

 

 

 

 

 

To solve this problem you will need 

to solve 

 

5100.4

1


 

 

 

 

 

 
To solve this problem you will need 

to solve for x in the first equation and 

then plug it into the second expression 

and solve. 

 

4108
5.0

))(( 
xx

 

 

 

 

100
5.0


x
 

 

 

 


